
Lab 7: Scanned images

Lab 7: Scanned images

7.1. Scanned image collection

Here we build a small replica of Niupepa, the Maori Newspaper collection, using five newspapers taken
from two newspaper series. It allows full text searching and browsing by title and date. When a
newspaper is viewed, a preview image and its corresponding plain text are presented side by side, with a
"go to page" navigation feature at the top of the page.

The collection involves a mixture of plugins, classifiers, and format statements. The bulk of the work is
done by PagedImagePlugin, a plugin designed precisely for the kind of data we have in this example. For
each document, an "item" file is prepared that specifies a list of image files that constitute the document,
tagged with their page number and (optionally) accompanied by a text file containing the machine-
readable version of the image, which is used for full text searching. Three newspapers in our collection
(all from the series "Te Whetu o Te Tau") have text representations, and two (from "Te Waka o Te Iwi")
have images only. Item files can also specify metadata. In our example the newspaper series is recorded
as ex.Title and its date of publication as ex.Date. Issue ex.Volume and ex.Number metadata is also
recorded, where appropriate. This metadata is extracted as part of the building process.

1. Start a new collection called Paged Images and fill out the fields with appropriate information: it
is a collection sourced from an excerpt of Niupepa documents.

2. In the Gather panel, open the sample_files → niupepa → sample_items folder and drag the two
subfolders into your collection on the right-hand side. A popup window asks whether you want
to add PagedImagePlugin to the collection: click <Add Plugin>, because this plugin will be
needed to process the item files.

3. Some of the files you have just dragged in are the newspaper images; others are text files that
contain the text extracted from these images. We want these to be processed by
PagedImagePlugin, not ImagePlugin or TextPlugin. Switch to the Document Plugins section
of the Design panel and delete ImagePlugin and TextPlugin.

4. Open up the configuration window for PagedImagePlugin by double-clicking on the plugin.
Switch on its create_screenview configuration option by checking the box. The source images
we use were scanned at high resolution and are large files for a browser to download. The
create_screenview option generates smaller screen-resolution images of each page when the
collection is built. Click <OK>.

5. Now go to the Create panel, build the collection and preview the result. Search for "waka" and
view one of the titles listed (all three appear as Te Whetu o Te Tau). Browse by Titles and view
one of the Te Waka o Te Iwi newspapers. Note that only the Te Whetu o Te Tau newspapers have
text; Te Waka o Te Iwi papers don't.

This collection was built with Greenstone's default settings. You can locate items of interest, but the
information is less clearly and attractively presented than in the full Niupepa collection.

Grouping documents by series title and displaying dates within each group

Under Titles documents from the same series are repeated without any distinguishing features such as
date, volume or number. It would be better to group them by series title and display other information

Lab 7: Scanned images

within each group. This can be accomplished using an AZCompactList classifier rather than AZList, and
tuning the classifier's format statement.

6. In the Design panel, under the Browsing Classifiers section, delete the AZList classifiers for ex.
Source and ex.Title.

7. Now add an AZCompactList classifier, setting its metadata option to ex.Title, and add a
DateList classifier, setting its metadata option to ex.Date.

8. Build the collection, and preview the Titles list and the Dates list.

9. Now we change the format statement for Titles to display more information about the
documents. In the Format Features section of the Format panel, select the ex.Title classifier
(CL1) in the Choose Feature list, and VList in the Affected Component list. Click <Add
Format> to add this format statement to your collection. Delete the contents of the HTML
Format String box, and add the following text. (This format statement can be copied and pasted
from the file sample_files → niupepa → formats → titles_tweak.txt.)

<td valign="top">[link][icon][/link]</td>
<td valign="top">
{If}{[numleafdocs],[ex.Title] ([numleafdocs]),
Volume [ex.Volume] Number [ex.Number] Date [ex.Date]}
</td>

10. Refresh in the web browser to view the new Titles list.

As a consequence of using the AZCompactList classifier, bookshelf icons appear when titles are
browsed. This revised format statement has the effect of specifying in brackets how many items
are contained within a bookshelf. It works by exploiting the fact that only bookshelf icons define
[numleafdocs] metadata. For document nodes, Title is not displayed. Instead, Volume,
Number and Date information are displayed.

11. The Dates list groups documents by date. A numeric date is displayed at the end of each
document title, for example 18580601. This is in the Greenstone internal date format, which is
crucial for the DateList classifier (CL2) to correctly parse date metadata and generate an ordered
date list. However, you can make the date look nice by adding a [Format:] macro to date
metadata.

12. Now we format the date. In the Format Features section of the Format panel, select the
DateList classifier and set Affected Component to DateList. Replace the last line

<td>{Or}{[dc.Date],[exp.Date],[ex.Date]}</td>

with

<td>{Or}{[dc.Date],[exp.Date],[format:ex.Date]}</td>

Refresh in the web browser to view the new Dates list.

Displaying scanned images and suppressing dummy text

Lab 7: Scanned images

When you reach a newspaper, only its associated text is displayed. When either of the Te Waka o Te Iwi
newspapers is accessed, the document view presents the message "This document has no text." No
scanned image information (screen-view resolution or otherwise) is shown, even though it has been
computed and stored with the document. This can be fixed by a format statement that modifies the default
behaviour for DocumentText.

13. In the Format Features section of the Format panel, select the DocumentText format
statement. The default format string displays the document's plain text, which, if there is none, is
set to "This document has no text." Change this to the following text. (This format statement can
be copied and pasted from the file sample_files → niupepa → formats → doc_tweak.txt)

<table><tr>
<td valign=top>[srclink][screenicon][/srclink]</td>
<td valign=top>[Text]</td>
</tr></table>

Including [screenicon] has the effect of embedding the screen-sized image generated by
switching the screenview option on in PagedImagePlugin. It is hyperlinked to the original image
by the construct [srclink]...[/srclink]. This is a large image but it may be scaled by
your browser.

This modification will display screenview image, but does nothing about the dummy text "This
document has no text.", which will still be displayed. To get rid of this, edit the DocumentText
format statement again and replace

<td valign=top>[Text]</td>

with

{If}{[NoText] ne '1',<td valign=top>[Text]</td>}

14. Preview the collection and view one of the Te Waka o Te Iwi documents. The line "This
document has no text." should now be gone.

Searching at page level

15. The newspaper documents are split into sections, one per page. For large documents, it is useful
to be able to search on sections rather than documents. This allows users to more easily locate
the relevant information in the document.

16. Go to the Search Indexes section of the Design panel. Remove the ex.Source index. Check the
section checkbox to build the indexes on section level as well as document level. Make section
level the default by selecting its Default radio button.

17. Build and preview the collection.

18. Set the display text used for the level drop-down menu by going to the Search section on the
Format panel. Set the document level text to "newspaper", and the section level text to "page".

Refresh in your web browser. Compare searching at "newspaper" level with searching at "page"
level. A useful search term for this collection is "aroha".

Lab 7: Scanned images

19. You will notice that when searching for individual pages, the newspaper image is displayed in
the search results. As these images are very large, this is not very useful. Go to Format Features
section of the Format panel in the Librarian Interface, choose All Features in Choose Feature
list, and select the VList format statement from the list of assigned format statements. Remove
the second line from the HTML Format String:

<td valign="top">[ex.srclink]{Or}{[ex.thumbicon],[ex.srcicon]}[ex./
srclink]</td>

The reason why this is causing a problem is that the PagedImagePlugin does not produce ex.
thumbicon, and as a consequence this format statement displays ex.srcicon, which is very large

While we are here, let's remove the filename from the display. Remove the following from the
last line of the format string:

{If}{[ex.Source],
<i>([ex.Source])</i>}

Preview the collection—the search results should be back to normal.

20. Now you will notice that page level search results only show the Title of the page (the page
number), and not the Title of the newspaper. We'll modify the format statement to show the
newspaper title as well as the page number. Also, lets add in Volume and Number information
too.

In the Format Features section, select Search in Choose Feature, and VList in Affected
Component. Click <Add Format> to add this format to the collection. The previous changes
modified VList, so they will apply to all VLists that don't have specific format statements. These
next changes are made to SearchVList so will only apply to search results.

The extracted Title for the current section is specified as [ex.Title] while the Title for the
parent section is [parent:ex.Title]. Since the same SearchVList format statement is used
when searching both whole newspapers and newspaper pages, we need to make sure it works in
both cases.

Set the format statement to the following text (it can be copied and pasted from the file
sample_files → niupepa → formats → search_tweak.txt):

<td valign="top">[link][icon][/link]</td>
<td valign="top">
{If}{[parent:ex.Title],[parent:ex.Title] Volume [parent:ex.Volume]
Number [parent:ex.Number]: Page [ex.Title],
[ex.Title] Volume [ex.Volume] Number [ex.Number]}

<i>({Or}{[parent:ex.Date],[ex.Date],undated})</i></td>
</td>

Preview the search results. Items display newspaper title, Volume, Number and Date, and pages
also display the page number.

The collection you have just built involves a fairly complex document structure. There are two series of
newspapers, Te Waka and Te Whetu.

In the Te Waka series there are two actual newspapers, Volume 1 Numbers 1 and 2. Number 1 has 4

Lab 7: Scanned images

pages, numbered 1, 2, 3, 4; Number 2 has 4 pages, numbered 5, 6, 7, 8. The page numbers increase
consecutively through each volume, despite the fact that the volume is divided into different Numbers.
Each page in the Te Waka series is represented by a single file, a GIF image of the page.

The Te Whetu series has three actual newspapers, Volume 1 Numbers 1, 2, and 3. Number 1 has 4 pages,
numbered 1, 2, 3, 4; Number 2 has 5 pages, numbered 5, 6, 7, 8, 9; Number 3 has 5 pages, numbered 10,
11, 12, 13, 14. Again the page numbers increase consecutively through each volume. Each page in this
series is represented by two files, a GIF image of the page and a text file containing the OCR’d text that
appears on it.

The key to this structure is in the respective .item files. Here is a synopsis of the information they contain:

(9-1-1) Te Waka Volume 1 Number 1
 p.1 gif
 p.2 gif
 p.3 gif
 p.4 gif
(9-1-2) Te Waka Volume 1 Number 2
 p.5 gif
 p.6 gif
 p.7 gif
 p.8 gif
(10-1-1) Te Whetu Volume 1 Number 1
 p.1 gif text
 p.2 gif text
 p.3 gif text
 p.4 gif text
(10-1-2) Te Whetu Volume 1 Number 2
 p.5 gif text
 …
 p.9 gif text
(10-1-3) Te Whetu Volume 1 Number 3
 p.10 gif text
 …
 p.14 gif text

Lab 7: Scanned images

7.2. Advanced scanned image collection

In this exercise we build upon the collection created in the Scanned image collection exercise. We add a
new newspaper by creating an item file for it, add a new newspaper using the extended XML item file
format, and modify the formatting.

Adding another newspaper to the collection

Another newspaper has been scanned and OCRed, but has no item file. We will add this newspaper into
the collection, and create an item file for it.

1. In the Librarian Interface, open up the Paged Image collection that was created in exercise
Scanned image collection if it is not already open (File → Open...).

2. In the Gather panel, add the folder sample_files → niupepa → new_papers → 12 to your
collection.

Inside the 12 folder you can see that there are 4 images and 4 text files.

3. Create an item file for the collection. Have a look at an existing item file to see the format. Start
up a text editor (e.g. WordPad) to open a new document. Add some metadata. The Title for this
newspaper is "Te Haeata 1859-1862". The Volume is 3, Number is 6, and the Date is
"18610902". (Greenstone's date format is yyyymmdd.) Metadata must be added in the form:

<Metadata name>Metadata value

For this document, the metadata looks like:

<Title>Te Haeata 1859-1862
<Date>18610902
<Volume>3
<Number>6

4. For each page, add a line in the file in the following format:

pagenum:imagefile:textfile

For example, the first page entry would look like

1:images/12_3_6_1.gif:text/12_3_6_1.txt

Note that if there is no text file, you can leave that space blank. You need to add a line for each
page in the document. Make sure you increment the page number for each line.

5. Save the file using Filename 12_3_6.item, and save as a plain text document. (If you are using
Windows, make sure the file isn't saved as 12_3_6.item.txt.) Back in the Gather panel of the
Librarian Interface, locate the new file in the Workspace tree, and drag it into the collection,
adding it to the 12 folder.

Lab 7: Scanned images

6. Build the collection and preview. Check that your new document has been added.

XML based item file

There are two styles of item files. The first, which was used in the previous section, uses a simple text
based format, and consists of a list of metadata for the document, and a list of pages. This format allows
specification of document level metadata, and a single list of pages.

The second style is an extended format, and uses XML. It allows a hierarchy of pages, and metadata
specification at the page level as well as at the document level. In this section, we add in two newspapers
which use XML-based item files.

7. In the Gather panel, add the folder sample_files → niupepa → new_papers → xml (you need to
add the xml folder, not the 23 folder) to your collection.

8. Open up the file xml → 23 → 23__2.item and have a look at the XML. This is Number 2 of the
newspaper titled Matariki 1881. The contents of this document have been grouped into two
sections: Supplementary Material, which contains an Abstract, and Newspaper Pages, which
contains the page images (and OCR text).

9. Build and preview the collection. The xml style items have been included, but the document
display for these items is not very nice.

Using process_exp to control document processing

10. Paged documents can be presented with a hierarchical table of contents, or with next and
previous page arrows, and a "go to page" box (like we have done so far). The display type is
specified by the documenttype (hierarchy|paged) option to PagedImagePlugin. The next and
previous arrows suit the linear sequence documents, while the table of contents suits the
hierarchically organised document.

Ordinarily, a Greenstone collection would have one plugin per document type, and all documents
of that type get the same processing. In this case, we want to treat the XML-based item files
differently from the text-based item files. We can achieve this by adding two
PagedImagePlugin plugins to the collection, and configuring them differently.

11. Change the mode in the Librarian Interface to Library Systems Specialist (or Expert) mode
(using File → Preferences... → Mode), because you will need to change the order of plugins,
and use regular expressions in the plugin options.

For version 2.71, you'll need to close GLI now then restart it to get the list of plugins to update
properly.

12. Go to the Document Plugins section of the Design panel, and add a new PagedImagePlugin
plugin. Enable the create_screenview option, set the documenttype option to hierarchy and set
the process_exp option to xml.*.item$.

13. Move this PagedImagePlugin plugin above the original one in the Assigned Plugins list.

14. The XML based newspapers have been grouped into a folder called xml. This enables us to
process these files differently, by utilizing the process_exp option which all plugins support. The

Lab 7: Scanned images

first PagedImagePlugin in the list looks for item files underneath the xml folder. These
documents will be processed as 'hierarchical' documents. Item files that don't match the process
expression (i.e. aren't underneath the xml folder) will be passed onto the second
PagedImagePlugin, and these are treated as 'paged' documents.

Rebuild and preview the collection. Compare the document display for a paged document e.g.
Te Waka o Te Iwi, Vol. 1, No. 1 with a hierarchical document, e.g. Matariki 1881, No. 1.

Switching between images and text

We can modify the document display to switch between the text version and the screenview and full size
versions. We do this using a combination of format statements and macro files.

15. First of all we will add a macro file to the collection. Close the collection in the Librarian
Interface. In a file browser outside of Greenstone, locate the Paged Image collection in your
Greenstone installation: Greenstone → collect → pagedima.

Also in a file browser, locate the file sample_files → niupepa → macros → extra.dm. Copy this
file and paste it into the macros folder inside the pagedima collection.

16. Back in the Librarian Interface, open up the collection again, and go to the Format Features
section of the Format panel.

17. Select AllowExtendedOptions in the Choose Feature list, and click <Add Format>. Tick the
Enabled checkbox. This gives us more control over the layout of the page—in this case, we
want to replace the standard DETACH and NO HIGHLIGHTING buttons with buttons that
switch between images and text.

18. Select the DocumentHeading format item and set it to the following text (which can copied
from sample_files → niupepa → formats → adv_doc_heading.txt).

<div class="heading_title">{Or}{[parent(Top):ex.Title],[ex.Title]}
</div>
<div class="buttons" id="toc_buttons">
{If}{[srcicon],_document:viewfullsize_}
{If}{[screenicon],_document:viewpreview_}
{If}{[NoText] ne '1',_document:viewtext_}
</div>
<div class="toc">[DocTOC]</div>

{Or}{[parent(Top):ex.Title],[ex.Title]} outputs the newspaper Title metadata. This
is only stored at the top level of the document, so if we are at a subsection, we need to get it from
the top ([parent(Top):ex.Title]). Note that we can't just use [parent:ex.Title] as this
retrieves the Title from the immediate parent node, which may not be the top node of the
document.

document:viewpreview, _document:viewfullsize_, _document:viewtext_ are
macros defined in extra.dm which output buttons for preview, fullsize and text versions,
respectively. We choose which buttons to display based on what metadata and text the document
has. Note you can view the macros by going to the Collection Specific Macros section of the
Format panel.

[DocTOC] is the document table of contents or "go to page" navigation element. Since we are

Lab 7: Scanned images

using extended options, we need to explicitly specify this for it to appear in the page.

The different pieces are surrounded by <div> elements, so that the appropriate styling
information can be used.

19. Select the DocumentText format statement and set it to the following text (which can be copied
from sample_files → niupepa → formats → adv_doc_text.txt):

{If}{_cgiargp_ eq 'fullsize',[srcicon],
{If}{_cgiargp_ eq 'preview',[screenicon],
{If}{[NoText] ne '1',[Text],[screenicon]}}}

This format statement changes the display based on the "p" argument (_cgiargp_). This is not
used normally for document display, so we can use it here to switch between full size image
([srcicon]), preview size image ([screenicon]) and text ([Text]) versions of each page.

20. Preview the collection. View some of the documents—once you have reached a newspaper page,
you should get fullsize, preview and text options.

Copyright © 2005 2006 2007 2008 2009 by the New Zealand Digital Library Project at the University of
Waikato, New Zealand

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included

in the section entitled “GNU Free Documentation License.”

http://www.nzdl.org/
http://www.waikato.ac.nz/
http://www.waikato.ac.nz/
http://www.gnu.org/licenses/fdl.html
http://www.gnu.org/licenses/fdl.html
http://greenstonewiki.cs.waikato.ac.nz/wiki/gsdoc/GNUFDL.html

