
Lab 5: Advanced collection configuration

Lab 5: Advanced collection configuration

5.1. Pointing to documents on the web

1.  Open up your webtudor collection, and in the Gather panel inspect the files you dragged into it. 
The first folder is englishhistory.net, which opens up to reveal tudor, and so on. The files represent a 
complete sweep of the pages (and supporting images) that constitute the Tudor citizens section of the 
englishhistory.net web site. They were downloaded from the web in a way that preserved the 
structure of the original site. This allows any page's original URL to be reconstructed from the folder 
hierarchy.

2.  In the Design panel, select the Document Plugins section, then select the plugin HTMLPlug line 
and click <Configure Plugin...>. A popup window appears. Locate the file_is_url option (about 
halfway down the first block of items) and switch it on. While you are there, switch off the 
smart_block option so that stray images are not processed. Click <OK>.

Setting this option to the HTMLPlug means that Greenstone sets an additional piece of metadata for 
each document called URL, which gives its original URL.

It is important that the files gathered in the collection start with the web domain name (englishhistory.
net in this case). The conversion process will not work if you dragged over a subfolder, for example 
the tudor folder, because this will set URL metadata to something like

http://tudor/citizens/... 

rather than

http://englishhistory.net/tudor/citizens/... 

If you have copied over a subfolder previously, delete it and make a fresh copy. Drag the folder in 
the right-hand side of the Gatherpanel on to the trash can in the lower right corner. Then obtain a 
fresh copy of the files by dragging across the englishhistory.netfolder from the Downloaded 
Filesfolder on the left-hand side.

3.  To make use of the new URL metadata, the icon link must be changed to serve up the original URL 
rather than the copy stored in the digital library. Go to the Format panel, select the Format 
Features section and edit the VList format statement by replacing

[link][icon][/link] 

with

[weblink][webicon][/weblink] 

4.  Switch to the Create panel and build and preview the collection. Note that the document icons have 
changed. The collection behaves exactly as before, except that when you click a document icon your 
web browser retrieves the original document from the web (assuming it is still there by the time you 
do this exercise!). If you are working offline you will be unable to retrieve the document.



Lab 5: Advanced collection configuration

5.2. Enhanced PDF handling

Greenstone converts PDF files to HTML using third-party software: pdftohtml.pl. This lets users view these 
documents even if they don't have the PDF software installed. Unfortunately, sometimes the formatting of the 
resulting HTML files is not so good.

This exercise explores some extra options to the PDF plugin which may produce a nicer version for display. 
Some of these options use the standard pdftohtml program, others use ImageMagick and Ghostscript to 
convert the file to a series of images. Ghostscript is a program that can convert Postscript and PDF files to 
other formats. You can download it from http://www.cs.wisc.edu/~ghost/ (follow the link to the current stable 
release).

1.  In the Librarian Interface, start a new collection called "PDF collection" and base it on -- New 
Collection --.

In the Gather panel, drag just the PDF documents from sample_files → Word_and_PDF → 
Documents into the new collection. Also drag in the PDF documents from sample_files → 
Word_and_PDF → difficult_pdf.

Go to the Create panel and build the collection. Examine the output from the build process. You will 
notice that one of the documents could not be processed. The following messages are shown: "The 
file pdf05-notext.pdf was recognised but could not be processed by any plugin.", and "3 were 
processed and included in the collection. 1 was rejected".

2.  Preview the collection and view the documents. pdf05-notext.pdf does not appear as it could not be 
processed. pdf06-weirdchars.pdf was processed but looks very strange. The other PDF documents 
appear as one long document, with no sections. 

Modes in the Librarian Interface 

The Librarian Interface can operate in different modes. The default mode is Librarian mode. We can use 
Expert mode to work out why the pdf file could not be processed. 

3.  Use the Preferences... item on the File menu to switch to Expert mode and then build the collection 
again. The Create panel looks different in Expert mode because it gives more options: locate the 
<Build Collection> button, near the bottom of the window, and click it. Now a message appears 
saying that the file could not be processed, and why. Amongst all the output, we get the following 
message: "Error: PDF contains no extractable text. Could not convert pdf05-notext.pdf to HTML 
format". pdftohtml.pl cannot convert a PDF file to HTML if the PDF file has no extractable text.

4.  We recommend that you switch back to Librarian mode for subsequent exercises, to avoid 
confusion.

Splitting PDFs into sections 

5.  In the Document Plugins section of the Design panel, configure PDFPlug. Switch on the 
use_sections option. 

http://www.cs.wisc.edu/~ghost/


Lab 5: Advanced collection configuration

In the Search Indexes section, check the section checkbox to build the indexes on section level as 
well as document level.

Build and preview the collection. View the text versions of some of the PDF documents. Note that 
these are now split into a series of pages, and a "go to page" box is provided. The format is still a bit 
ugly though, and pdf05-notext.pdf is still not processed.

Using image format 

6.  If conversion to HTML doesn't produce the result you like, PDF documents can be converted to a 
series of images, one per page. This requires ImageMagick and Ghostscript to be installed.

7.  In the Document Plugins section, configure PDFPlug. Set the convert_to option to one of the 
image types, e.g. pagedimg_jpg. Switch off the use_sections option, as it is not used with image 
conversion. 

8.  Build the collection and preview. All PDF documents (including pdf05-notext.pdf) have been 
processed and divided into sections, but each section displays "This document has no text.". For the 
conversion to images for PDF documents, no text is extracted. 

9.  In order to view the documents properly, you will need to modify the format statement. In the 
Format Features section on the Format panel, select the DocumentText format statement. Replace 

[Text] 

with

[srcicon] 

10.  Preview the collection. Images from the document are now displayed instead of the extracted text. 
Both pdf05-notext.pdf and pdf06-weirdchars.pdf display nicely now.

In this collection, we only have PDF documents and they have all been converted to images. If we 
had other document types in the collection, we should use a different format statement, such as: 

{If}{[parent:FileFormat] eq PDF,[srcicon],[Text]} 

FileFormat is an extracted metadata item which shows the format of the source document. We can 
use this to test whether the documents are PDF or not: for PDF documents, display [srcicon], for 
other documents, display [Text]. 

Using process_exp to control document processing (advanced) 

11.  Processing all of the PDF documents using an image type may not give the best result for your 
collection. The images will look nice, but as no text is extracted, searching the full text will not be 
available for these documents. The best solution would be to process most of the PDF files as 
HTML, and only use the image format where HTML doesn't work.

12.  We achieve this by putting the problem files into a separate folder, and adding another PDFPlug 
plugin with different options.



Lab 5: Advanced collection configuration

13.  Go to the Gather panel. Make a new folder called "notext": right click in the collection panel and 
select New folder from the menu. Change the Folder Name to "notext", and click <OK>.

Move the two pdf files that have problems with html (pdf05-notext.pdf and pdf06-weirdchars.pdf) 
into this folder by drag and drop. We will set up the plugins so that PDF files in this notext folder are 
processed differently to the other PDF files.

14.  Change to Library Systems Specialist mode so that you can add two of the same plugin, and use 
regular expressions in the plugin options (File → Preferences... → Mode). 

For version 2.71, you'll need to close GLI now then restart it to get the list of plugins to update 
properly. 

15.  Switch to the Document Plugins section of the Design panel. Add a second PDF plugin by selecting 
PDFPlug from the Select plugin to add: drop-down list, and clicking <Add Plugin...>. This plugin 
will come after the first PDF plugin, so we configure it to process PDF documents as HTML. Set the 
convert_to option to html, and switch on the use_sections option. Click <OK>.

16.  Configure the first PDF plugin, and set the process_exp option to 'notext.*\.pdf'.

17.  The two PDF plugins should have options like the following:

plugin PDFPlug -convert_to pagedimg_jpg -process_exp "notext.*\.pdf" 
plugin PDFPlug -convert_to html -use_sections 

The paged_img version must come earlier in the list than the html version. The process_exp for the 
first PDFPlug will process any PDF files in the notext directory. The second PDFPlug will process 
any PDF files that are not processed by the first one.

Note that all plugins have the process_exp option, and this can be used to customize which 
documents are processed by which plugin. This option is only visible in Library Systems Specialist 
and Expert modes.

Change back to Librarian mode.

18.  Edit the DocumentText format statement. PDF files processed as HTML will not have images to 
display, so we need to make sure they get text displayed instead. Change [srcicon] to {If}
{[NoText] eq "1",[srcicon],[Text]}.

19.  Build and preview the collection. All PDF documents should look relatively nice. Try searching this 
collection. You will be able to search for the PDFs that were converted to HTML (try e.g. 
"bibliography"), but not the ones that were converted to images (try searching for "FAO" or 
"METS").

Opening PDF files with query terms highlighted 

20.  Next we'll customize the SearchVList format statement to highlight the query terms in a PDF file 
when it is opened from the search result list. This requires Acrobat Reader 7.0 version or higher, and 
currently only works on a Microsoft Windows platform.



Lab 5: Advanced collection configuration

21.  The search terms are kept in the macro variable _cgiargq_, and we append #search="_cgiargq_" to 
the end of a PDF file link to pass the query terms to the PDF file.

PDFPlug renames each PDF file as doc.pdf and saves it in a unique directory for that document, so 
we use

_httpcollection_/index/assoc/[archivedir]/doc.pdf 

to refer to the PDF source file. (However, if you used the -keep_original_filename option to 
PDFPlug when building the collection, the original name of the PDF file is kept, and we use

_httpcollection_/index/assoc/[archivedir]/[Source] 

instead to locate the PDF source file.)

22.  Select SearchVList from the list of assigned formats. We need to test whether the file is a PDF file 
before linking to doc.pdf, using {If}{[ex.FileFormat] eq 'PDF',,}. For PDF files, we use 
the above format instead of the [ex.srclink] and [ex./srclink] variables to link to the file.

The resulting format statement is:

<td valign="top">[link][icon][/link]</td> 
<td valign="top">{If}{[ex.FileFormat] eq 'PDF', <a href=
\"_httpcollection_/index/assoc/[archivedir]/doc.pdf#search=&quot;
_cgiargq_&quot;\">[ex.srcicon]</a>, 
[ex.srclink][ex.srcicon][ex./srclink]}</td> 
<td valign="top">[highlight] 
{Or}{[dc.Title],[ex.Title],Untitled} 
[/highlight]{If}{[ex.Source],<br><i>([ex.Source])</i>}</td> 

When the PDF icons are clicked in the search results, Acrobat will open the file with the search 
window open, and the query terms highlighted.



Lab 5: Advanced collection configuration

5.3. Enhanced Word document handling

The standard way Greenstone processes Word documents is to convert them to HTML format using a third-
party program, wvWare. This sometimes doesn't do a very good job of conversion. If you are using Windows, 
and have Microsoft Word installed, you can take advantage of Windows native scripting to do a better job of 
conversion. If the original document was hierarchically structured using Word styles, these can be used to 
structure the resulting HTML. Word document properties can also be extracted as metadata.

1.  In your digital library, preview the reports collection. Look at the HTML versions of the Word 
documents and notice how they have no structure-they have been converted to flat documents.

Using Windows native scripting 

2.  In the Librarian Interface, open up the reports collection. Switch to the Design panel and select the 
Document Plugins section on the left-hand side. Double click the WordPlug plugin and switch on 
the windows_scripting option.

In the Search Indexes section, check the section checkbox to build the indexes on section level as 
well as document level.

3.  Build the collection. You will notice that the Microsoft Word program is started up for each Word 
document—the document is saved as HTML from Word itself, to get a better conversion. Preview 
the collection. In the Titles list, notice that word03.doc and word06.doc now have a book icon, 
rather than a page icon. These now appear with hierarchical structure.

The default behaviour for WordPlug with windows_scripting is to section the document based on 
"Heading 1", "Heading 2", "Heading 3" styles. If you open up the word03.doc or word06.doc 
documents in Word, you will see that the sections use these Heading styles.

Note, to view style information in Word, you can select Format → Styles and Formatting from the 
menu, and a side bar will appear on the right hand side. Click on a section heading and the 
formatting information will be displayed in this side bar.

4.  Some of the documents do not use styles (e.g. word01.doc) and no structure can be extracted from 
them. Some documents use user-defined styles. WordPlug can be configured to use these styles 
instead of Heading 1, Heading 2 etc. Next we will configure WordPlug to use the styles found in 
word05.doc.

Modes in the Librarian Interface 

5.  The Librarian Interface can operate in four modes. Go to File → Preferences... → Mode and see the 
four modes and what functionality they provide access to. Librarian is the default mode.

6.  Change the mode to Library Systems Specialist because you will need to use regular expressions to 
set up the style options in the next part of the exercise.

Defining styles 



Lab 5: Advanced collection configuration

7.  Open up word05.doc in Word (by double-clicking on it in the Gather pane), and examine the title 
and section heading styles. You will see that various user-defined header styles are set such as:

❍     ManualTitle: Title of the manual 
❍     ChapterTitle: Level 1 section heading 
❍     SectionHeading: Level 2 section heading 
❍     SubsectionHeading: Level 3 section heading 
❍     AppendixTitle: Appendix section title 

8.  In the Document Plugins section of the Design panel, select WordPlug and click <Configure 
Plugin...>. Four types of header can be set which are:

❍     level1_header (level1Header1|level1Header2|...)
❍     level2_header (level2Header1|level2Header2|...)
❍     level3_header (level3Header1|level3Header2|...)
❍     title_header (titleHeader1|titleHeader2|...)

These header options define which styles should be considered as title, level 1, level 2 and level 3 
styles. 

Ensure that the windows_scripting option is checked, and set the options as follows (spaces in the 
Word styles are removed when converting to HTML styles, and these options must match the HTML 
styles):

level1_header:(ChapterTitle|AppendixTitle) 
level2_header: SectionHeading 
level3_header: SubsectionHeading 
title_header: ManualTitle 

If you can't see these options in the WordPlug configuration pane, check that you are in Library 
Systems Specialist mode as described above. 

Once these are set, click <OK>.

9.  Close any documents that are still open in Word, as this can prevent the build process from 
completing correctly.

10.  Build the collection and preview it. Look in particular at word05.doc. You will see that this 
document is now also hierarchically structured.

If you have documents with different formatting styles, you can use (...|...) to specify all of the 
different styles.

Removing pre-defined table of contents 

11.  If you look at the HTML versions of word05.doc and word06.doc, you will see that it now has two 
tables of contents. One is generated by Greenstone based on the document's styles, the other was 
already defined in the Word document. WordPlug can be configured to remove predefined tables of 
contents and tables of figures. The tables must be defined with Word styles in order for this to work.

12.  To remove the tables of contents and figures from word06.doc and the table of contents from word05.



Lab 5: Advanced collection configuration

doc, switch on the delete_toc option in WordPlug. Set the toc_header option to (MsoToc1|
MsoToc2|MsoToc3|MsoTof|TOA). In this document, the table of contents and list of figures use 
these four style names. Click <OK>.

13.  Build and preview the collection. Both word05.doc and word06.doc should now have only one table 
of contents.

14.  Switch the Librarian Interface back to Librarian mode (File → Preferences... → Mode).

Extracting document properties as metadata 

15.  When the windows_scripting option is set, word document properties can be extracted as metadata. 
By default, only the Title will be extracted. Other properties can be extracted using the 
metadata_fields option.

16.  In the Enrich panel, look at the metadata that has been extracted for word05.doc and word06.doc. 
Now open the documents in Word and look at what properties have been set (File → Properties). 
They have Title, Author, Subject, and Keywords properties. WordPlug can be configured to look for 
these properties and extract them.

17.  In the Design panel, under Document Plugins, configure WordPlug once again. Switch on the 
configuration option metadata_fields. Set the value to 

Title,Author<Creator>,Subject,Keywords<Subject> 

This will make WordPlug try to extract Title, Author, Subject and Keywords metadata. Title and 
Subject will be saved with the same name, while Author will be saved as Creator metadata, and 
Keywords as Subject metadata.

18.  Make sure you have closed all the documents that were opened, then rebuild the collection.

19.  Look at the metadata for the two documents again in the Enrich panel. You should now see ex.
Creator and ex.Subject metadata items. This metadata can now be used in display or browsing 
classifiers etc.



Lab 5: Advanced collection configuration

5.4. Section tagging for HTML documents

1.  In a browser, take a look at the Greenstone demo collection. Browse to one of the documents. This 
collection is based on HTML files, but they appear structured in the collection. This is because these 
HTML files were tagged by hand into sections.

2.  Using a text editor (e.g. WordPad) open up one of the HTML files from the demo collection: 
Greenstone → collect → demo → import → fb33fe →fb33fe.htm. You will see some HTML 
comments which contain section information for Greenstone. They look like:

<!-- 
<Section> 
  <Description> 
    <Metadata name="Title">Farming snails 1: Learning about snails; 
    Building a pen; Food and shelter plants</Metadata> 
  </Description> 
--> 
 
<!-- 
</Section> 
<Section> 
  <Description> 
    <Metadata name="Title">Dew and rain</Metadata> 
  </Description> 
--> 

When Greenstone encounters a <Section> tag in one of these comments, it will start a new 
subsection of the document. This will be closed when a </Section> tag is encountered. Metadata 
can also be added for each section—in this case, Title metadata has been added for each section. In 
the browser, find the Farming snails 1 document in the demo collection (through the Titles 
browser). Look at its table of contents and compare it to the <Section> tags in the HTML 
document.

3.  Add a new Section into this document. For example, lets add a new subsection into the Introduction 
chapter. In the text editor, add the following just after the Section tag for the Introduction section:

<!-- 
<Section> 
  <Description> 
    <Metadata name="Title">Snails are good to eat.</Metadata> 
  </Description> 
--> 

Then just before the next section tag (What do you need to start?), add the following:

<!-- 
</Section> 
--> 

The effect of these changes is to make a new subsection inside the Introduction chapter.

4.  Open the Greenstone demo collection in the Librarian Interface. In the Document Plugins section of 



Lab 5: Advanced collection configuration

the Design panel, note that HTMLPlug has the description_tags option set. This option is needed 
when <Section> tags are used in the source documents.

5.  Build and preview the collection. Look at the Farming snails 1 document again and check that your 
new section has been added.




